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We present a formal method of construction of models of continuous media within the
framework of the General Theory of Relativity. Starting from the variational principle
formulated in [1], we obtain the equations of state, together with a closed system of dif-
ferential equations describing the continuous medium, the determining parameters of which
include the first and second derivatives of the laws of motion and of the field functions.
We note that a continuous medium is characterised by three, generally distinct, tensors of
the energy impulse. We consider a series of models; we also show how it is possible to
arrive from the derived formulas to the corresponding expressions in the Newtonian mech-
anics.

1. General procedure in the construction of models of continuous media. Let us
consider the construction of models of continuous media by means of the variational prin~
ciple expressed in the form [1]

6§Aa’r+éw+6w*:~,0 1.1
A%

Here V is an arbitrary volume of a four-dimensional Riemann manifold of states G, A
is a Lagrangian which we shall regard as a four-dimensional scalar, and § W* is the given
functional. The quantity W is expressed as an integral along the boundary of the volume
¥, the boundary being a three~-dimensional region X, of a linear combination of the varia~
tions of the defining parameters and their derivatives, and it is fully determinable if func-~
tions A and 8¥* are known.

The model of the continuous medium will be defined if the Lagrangian A and W* are
known, For instance, for a model of an ideal fluid with reversible processes in the Special
Theory of Relativity we have, as will be shown later, A=~ pU(p S), where p is the dens-
ity of the rest mass of the fluid, U is the internal energy and S is the entropy.

Further we shall assume that the arguments of A include the following quantities:
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Here*, g;: are the components of the metric tensor of the space-time manifold G in
the reference system of the observer, the coordinates of which are denoted by x* and &P
are the coordinates in the associated frame of reference, with the coordinate lines £*
coinciding with the world lines of the particles of the medium the Lagrangian coordinates
of which are &%, £? and &2, Functions o (£P), defined in some region of the manifold G,
fully describe the motion of the medium**.When the associated frame of reference is assumed
fixed, the complex :z:ip = Jx' | Gt forms a vector of index i in the reference system
of the observer. All the covariant derivatives, corresponding to the symbol Yy, , are
taken in the reference system xi. ie.

Vialp = 0zt [ Ok Fyiizy

The variables uA describe either the state of the medium (temperature, magnetisation,
curvature and rotation of a set of fault-free states in a continuous theory of dislocations,
etc.}, or the fields present (for instance, electromagnetic). The constant quantities K
describe the properties of the medium (anisotropy, dielectric permeability, metric tensor
of the set of initial states, etc.).

In the works of Sedov [1 and 2] a detailed study was made of the case when the
Lagrangian depends upon zi (£P), and p# () and their first derivatives. The inclusion
of the gradients of x and V/; yg‘i into the arguments of A makes it possible to take into
account some new effects such as the internal moment of momentam of the continnous
medium,

In Equation (1.1), uA is subjected to variations together with the metric of the
manifold G
9gi; = gij (1) — gi; (2)

and the trajectories of the particles of the medium

@)= @) T E e, 9E 8 = D ¢, (D) en

N==k

As usual, vector 5 is the principal, linear in g, part of the difference 't — i,
When yt” , assumed to be attached to the points of the medium are varied, it is necessary

* All lower case italics i, j, &, p, g, ..., range through the values 1, 2, 3 and 4, while the
capital indices A, B and C, can correspond to one or more tensorial indices (an anal-
ogous convention could also be constructed for the spinor indices 4, B and C). Lower
case greek letters @, 3, ¥, ... range through the values 1, 2 and 3 and correspond to the
spatial coordinates.

** It should be noted that the present analysis is confined to the case of homogeneous
media where A does not explicitly depend upon x* or £P.
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A

to distinguish between the full variation 5;1‘4 and the variation of ¢ at the point

x - SuA- By definition®*,
dut = [p'A (2" (R))= —pA (z (E) = opt + Szt V; pa

Here [“’A (1’(§))]= denotes the result of a parallel translation of u'A (x) from the

point x"to x, i.e,

W4 (2] = p'4 (2) + 821Vt
It is not difficult to verify the following expressions:

daip = [2"i (2")]T —aip (x) = 2'%p (2" (§)) +Tyizipbal — 2t (z §)) =

ES "é’é’z’g‘ (.'L' (g) —zt g)) -+ Fsl‘I Sl = """’"zsp + Pﬂ'lbxlx.cp — Isp st’xi —

= Oz, + Ozt iz,

. AV .
8 Vithy = 9 Vyaiy 4 821V Viaty = Vi iy + ark 2 3T " 4 82! V2t =

m

‘ L, 9V .
= Vi (aip V02t — 82! Vi) +- ark P Ty - 82! V Vi =

im

= 82! (V Vi, — ViV zi,) + V8 (8 Vixdy, — 89 Vi) +

Vkl' »

-f— :L‘jp Vkvjbxi + 61‘,
al‘,m
AVET .
6VJ1.LA == VﬁuA -+ a7 6F,m" -+ Ozt VIVJMA ==
Im
. . é V,'P«A
= V56§},A -} 8zt (ViVjp,A — V,Viw‘*} —_ (V,-éx‘) V,»;xA n
im
6VSV}HA v 5}1‘4 + q!L 3@Fgmn + éx:vv“’guA =
t'm
a .
= Vo Viou +° ar Jpn ar,m”) T _;%‘J' O™ -+ 821 V3V Vi = V¥ 0u4 +
{ im

+ 6xi (VNN,-;LA —_ VngViuA) — Vkﬁx" (6] szVip,A + 63 "V,-V,-;LA) —

* Usually 8u is defined thus: §,p4 — p'4 (&) — p? (2), where 81;1 is no longer a
tensor. This dehmnon, however, has some disadvantages; thus, for instance, the
quantities K© (8KC — 0) which were not variable in the first definition, must be re=
garded as variable in the second. The use of variations 8y is possible by virtue of
the equality

A=A @A) — Ap* (@) = [A @4E)NIF— A @) = A (IW4AE)17)—A @A @)
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Here, u/} denotes tensor V;i4, and the symbol V44, / 011" shows that the
derivative with respect to Flmn should be taken of the first covariant derivative of tensor
;,LA. , and not of the second covariant derivative of tensor uA. The variation of the
Céristof{el symbol @1',,", appearing in the above formulas is a tensor of third rank

which can be expressed in terms of the covariant derivatives of variations of the metric
()rzmn == B{mnkii V;ﬁgi}.
L 1 . : : s . . : . > 2 . N +
B!mMU = [“‘ g"" (éizém"“l[” 6m25!])+ g"” (61‘6111}\‘*‘ émial;‘) ”{“ g’“ (algﬁmk*}‘ 6m36!k”

-+

The variations of the metric can he conveniently expressed by [3]
dgi; = 0%gi; + Vim; + Vin;

where 1, is an arbitrary small covector. In the special theory of relativity (where the

tensor of the curvature of the spacestime manifold Bijkl = 0) ,by definition 9*g;; = 0,

and it is easily seen that the changes of the metric V;n; + V1, leave the tensor of
curvature R;;;! equal to zero, i.e. they remain within the Euclidian space.

Using the above variational formulas and the equality

VIAZQ + Ve = V@

one can write* :

5 SAdT _ vS{ _ %«@ﬁa*gﬁ + ", vj@ﬁ + MA(S}LA + Xiéx’} dtv —

v

WS{@ilni 4 Siilagij+si]kl vhag” + PAI(SHA + PA“ V,-(SIJJA -+
b3

4 Pizﬁxi + P V;8zi} nyds
Here, m is the vector of the normal to %, and other symbols have the following
meaning** :
(1.2)
)+

Lt (6;’\]/:“2”3“ AV —¢ + o oA Y —¢
2 V=e\ 9 32" 9 (9g;;/ 92%) © 0z*aa' 0 (0%,;/ 9x*aa")

* It should be borne in mind that the coefficients of the variation Sx* appearing in the
surface integral, will be different, depending on whether the variations in the corres-
ponding terms are 511’4 orSuA. Because of this, it is possible to have different definitions
for tensor PL,,

** In the derivation of Equations (1.2} to (1.10) the fact that both, A and the volume ¥ of
the spacetime manifold G are subjected to variations, was taken into account. For the

purpose of variations of an element of volume, one can use the formula

8(dv) =@V =g/ V=g+Vds)dr, g= det]g;l
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ijt aA A} p nkqr i J is i
+ V,‘lp ! + P W dl‘p B {m (‘Rskq 6r + ]{skr 6[1)
oA oA
= . —V; ———— (1.3)
Ma ap v, ,u‘* Y 0Vi\7;‘PA
X, =V, (Pi 4 A8 — 22 Vi, — -V, Vizp ,___v,pA
i— 7 1 1 0:5]3 ©vhs ij . (1 4)
N ggua_ N G, A_ﬂv.Kc__dv.v.KC
avij ViVip 0st,pA sVjVilk SKC VH aijC iV +
1 dA dA !
= — Ryl ! i VA
T 59,7, T T T g g e Y
SH it + 8 oAV —¢ (1.5)
o o (Bg”/ax ) 1/— g 0z* (0%;; | 9=*ad' )
aA i . . s
—_—  — (Dkp 0, + T8,
3 (0% pq | 02F02') (Tkp O¢” + T'sg'dp)
gl AN IVgE p + oA anP oA (anl" a4 v, aval" )] x
[aqu " | VA ATy " aVpVt N Ty, Por,,."
nlij 8A 3Vpl"A _ nlij : ,] (1.6)
X Bym “+ V, [Z—‘—“——avvppAaka km +(J+3)
ikl oA . [1 oA av,,p B nlij kol ]
ST = 6(3231']/3:::"69:1) 2 87V Wgm an (e d) (1.7
j A i it 1
P = —V,P", pfz__[ 1
G Pas P ot ieb] as
R . OA
J =V [ RAvVAY) 8,V Vs Iiy— —
Pi vl ()VJ‘LA + oy vk A ( k i!J* + k Vil ) 6::*,
a . .
_ m—.‘ (6 kaz —_ é V,x‘s) — IPiJl —_— A(Sij (1.9)
X

P = %[v'” avv sooat (e ] [zl’Tg/%vT: + (IH].)] (1.10)

Symbsl (k » 1) in Equations (1.2} to (1.10) indicates, that the term followed by it should
be supplemented with another term, identical to it, but with the suffices & and [ inter-

changed. Tensor R ! appearing in (1.2) and (1.4) is the tensor of curvature of the space-

ijk
time manifold.

It is easily seen, that the tensors P;i, P;il, etc. thus defined together with V
depend,in general, on the choice of the associated reference system, since the latter
affects the tensor ViIi,. It will be assumed later that the function A and the components
of the tensors P;7, P!, etc it defines given in the observers references system, do not
depend on the choice of the associated frame of reference. This assumption will be valid
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when, for instance, Vka:’p are mcluded in A in the following manner: first 2 is con-
tracted in p with some tensor @ p' and then derivative \/j is taken, Such approach was
adopted in the majority of earlier models.

We shall further consider the processes when

SW* =0
The definition of SW* is an entirely separate problem which will not be considered in

this paper.

Assuming that the variations of the variables and their derivatives are equal to zero
on 2 and that S is given as an integral with respect to X, of linear combinations of
variations of the variables and their derivatives, we obtain from {1.1)

Oi =0, if 0%*g;=0, V;0i=0, My,=0 X;=0 (1.11)
In addition, we have from equation (1.1) for the variations differing from zero on X
= § {8, + 57ag,, + STVdg,, + Patont |
+ PL'g0p? + Pléxi + PV 828} n, do

Equation {(1.1) is a generalised form of the principle of conservation of energy and
it contains terms desecribing the work done by virtual changes {variations) in the metric,
field functions and trajectories of the particles of the medium. Let us examine the indivi-
dual terms entering 8% to see what are energy contributions and states. The tensor P ij
performs work during changes in the world lines of the particles of the medium at the
boundary of region V; i.e. it expressto the four-dimensional generalisation of a three~
dimensional stress tensor a tensor of the energy impulse. Apart .from Pii’ some work is
done during changes in the trajectory by some double forces Pl.]l which will be defined more
accurately later. The terms of O W, containing tensors @i/, Siil, and S%ki, define the
work associated with changes in the metric, but the physical sense of tensors PAl and
PA it depends on the nature of the quantities g

The laws of conservation of energy involving P;7, P!, P4/, and PAfl, can be
formulated by means of Netter’s theorem. We stipulate that the integral of the Lagrangian
A is invariant with respect to the group, containing r parameters, of motions of the
Riemanian manifold G (i.e. group which does not alter the metric of G), over the four«

dimensional region V. Let the action of this group on x* and uA produce the following
variations

8zt = X ?, dpd = Mydw°
Here S denotes the parameters of the group, and it is assumed that V8% = 0).
The corresponding variation of the integral of A over the region V is

s\ Adr = \ Fo'don,ds
A

)l
where

Fil = PAXgi + PV, Xz + P MA + Piiv, Mt (1.12)
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From the condition of invariance of the integral of A taken over the region ¥, we

obtain

ViFl =10 (a=12,... 1) (1.13)

In particular, within the framework of the Special Theory of Relativity in an inertial
rectilinear reference system for the Lorentz group, whose parameters are the components
of the antisymmetric tensor &L’ij’ which are

dut = MAUdy;

Equation (1.13) assumes the form
i3 2 i 5 : Atj
351’.:" = P p?, MU = P Ut P AT 4 PY —“M;mt (1.14)

In order to impart physical sense to the components of the tensor M"k, let us compare
Equation (1.14) with a three-dimensional non-relativistic equation of the equilibrium of
the internal moment of momentum expressed in the divergence form:

2 omee 4 L (omedyr — Q%F) = ple— prE 4 ph® (119

Here maﬁ denotes a tensor of the internal moment of momentum, v” is three«
dimensional velocity, Qa,B’y is the surface internal momentum, p""’f3 is the stress tensor,
58 is the internal mass momentum. We shall assume in the following that w80,

Since Equations (1.14) and (1.15) can be assumed to represent identical physical
phenomena (when 4% = 0), we can have

%M“B" = pm®B, MY = pmaByy — Q*#Y

where ¢ is the velocity of light.

Thus, the ‘double forces’ P ii ! are comnected with the presence of the internal angular
momentum. They arise due to the fact that in the present formulation the argument of A
inclade gradients of the guantities 2 and V;u4; consequently, the models of continu-
ous media which contain amongst their defining parameters Vi, or the second deriv-
atives of the field functions exhibit, in general, an internal angular momentum.

Let us now examine equations (1.2} -{1.10) more closely on the basis of the General
Theory of Relativity. One of the basic premises in the general theory is that [3]

A=R; 2w+ An
where R is the scalar curvature of the manifold G, Am is the Lagrangian of matter and
% = const (the arguments which follow can easily be applied also to the case when % is

a variable). Then, since 0*gi; <= O » the first equation of (1.11) applies* and it assumes
the Einsteinian form:

* Let us note that in the Special Theory of Relativity a%g;; =0 and the first equation of

{continued on the next page)



614 V.L. Berdichevskii

. 1 s 1 .. s a
3 __ L i o
8 = = (R — LRg) + TV = 0
where R¥/ is Ricci’s tensor, and T4 denotes

“2{ 1 (aA,,,V?g g oA, V=g e N, V=g

VZ=e\ 08  a5"0(dg;,;/05") | oz*oal 5(o%,;/ as"ax)

+ vk‘yijh +‘ 2 av@ [J. 6<7pl‘:n anqu (Rskqiérj"}“ Rskrjéqi)}
sV pl

y -

)+
{1.18)

By virtue of Vjeij — (J and Bianchi’s identities, tensor Tij satisfies the equation
VT =
By virtue of this condition, it is assumed in the Special Theory of Relativity that T4
is a tensor of energy impulse. As shown in Equation (1.16), the right-hand side of
Einstein’s equation denoted by TY, contains, in general, also a tensor of curvature of the

time~space manifold Ri}'kl .

Let now assume tha the Lagrangian of matter A is a function of dg;; / d2% and
69gij | 8xXx! only by virtue of the covariant derivatives V;, and V;V;. Then, the
last equation of (1.11) can easily be put in the form:

(1.17)
8A 1 84,
v P (m)i + x sBka + 2' V; xksﬁiki{ —?W V:P'AR,‘MI +
+ — 00 (V Vipd —V;Vipd) B ViViVipdt — ¥V 4
P 1 ik4) W( Kl iViVipdt) = 0

where P(m)z denotes the tensor defined by Equation (1.9) but with A replaced by Am In
the Special Theory of Relativity, Equation (1.17) assumes the usual form

TiPemy = 0 (1.18)

In the General Theory, the divergence of the tensor me;i, which is a canonical
tensor of the energy impulse, does no longer in general, reduce to zero, but is expressible
as a linear function of the tensor of curvature Ri}-;ﬁ, in accordance with Equation (1.17).

(continued from previous page)

(1.11) is absent; ®¥ is defined by the second equation of {1.11). The only change of the
metric which is allowed by the Special Theory is 9**g;; = VZUTRAVR which, broadly
speaking, corresponds to the transition to a non-inertial reference system. At the same
time, in the equation definining the balance of energy additional terms (1.1)

g eﬂn in {dsx X Siﬂa**gijnl'!s’ Sgiﬂfivka**gi}n,ds
% - )

appear.
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Thus, in general case, there are three distinct tensors of the energy impulse: sym-

metrical T ¥/, canonical P(m)i: and P j here

- N i .
i_p .3 — 17
Pi = ’I (m)i 27‘]{61
In some models, I?z and TY are identical. This occurs, for instance, in the media
in which A,,=A,, (g“m, KC), where g“m is a metric tensor in the associated reference

system. Such media include the ideal fluid, since its density p can be expressed in terms
of g pq (ci. Equations (3.3) and (2.3)).

2. Deformable elastic media. We shall next consider the models of continuous media

in which the Lagrangian of matter depends on the quantities
o ~ o ~ o
g‘m, quM v, u‘:&?v g, u’h, NAELETS Vouy e.1)

where 1", are the components of the 4-covector representing the velocity in the associ-
ated reference system, g°p1 are the contravariant compenents of the metric tensor in the
initial condition, ;;°r are the component of the 4-vector representing the velocity in the
initial condition, and the symbol V" indicates that the covariant derivatives should be
calculated in the associated reference system*.

For definiteness, we shall choose in the time-space manifold a metric which can, at
every point, be brought to the form
g =8 =8gu=—8&a=—1 Baa =0
with the differential of the arc length ds along the world line
ds* = gij daidal = g~ 4 dt*
being a real quantity (g 44 > 0), and the element of the spatial distance a purely im-

aginary quantity. The radius of the 4-vector of the velocity is, in this convention, positive

and equal to + 1. Components of the vector o/ in the observer's reference system x* are

given by
. ddl oat 8™ \"roxd e
W == = = (6’:m'52272?) T Vea (2.2)

By definition we have, in the associated coordinate system

A

8¢P 2t — gyt = B (2.3)

== — =§
Vg“g R v Vg [1]
Also by definition, we shall treat the space of initial conditions as a Riemann space
with the metric defined by

g°pa (E% &%) = g%p (B, &), Bt = const, Vg%, 0

-~
* From now on, the symbol will be used to denote that the relevant quantity belongs
to the associated reference system. Tensors pertaining to the observer’s reference
system will be shown without this symbol, as before.
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4-vector of the velocity in the initial conditions will be defined by
°p (E%, EY = u®, (E%, &gf), G =comst, V7w 40

By definition, tensors ¢°P? and ©°P will denote
Y g

gmp'l = _1'.. a”

g° ()rf

It can be easily seen that the tensor fields defined in this way depend upon the

, g% =det] g%l u’P = g°rP1u’,y

specific associated system in which they were constructed. This, however, will not be the
case if the reference systems are confined only to those which allow transition from one
to the other by means of the transformations

=@, w=E4e@) -9

In the following, we shall allow only such associated reference systems for which
transition formulas will be of the type (2.4). This restriction still leaves us a wide choice
of the associated reference systems, since in a general case two associated reference
systems fi and ni (that is, reference systems whose coordinate lines £ and N* coincide
with the world lines of the particles of the medium) are connected by the transformation

n® = n* (&), W=t (&% &) (2.5)

We shall show that for the system of arguments (2.1) the energy-impulse tensor P, i
and ‘double’ forces P; Ik defined by Equations (1.9) and (1.10), are independent of the
choice of the associated reference system (let us recall that equations (1.9) and (1.10)
contain tensor S/y %%, which is dependent on the choice of the coordinate system).

For this purpose we shall have to determine

agAm R agqu ’ auAp g Ou v oV r.u p, AVER7 P, liAv4 'ru' .
azis v 6kals 01‘13 ¥ akals azis 0kals avk‘".l* )
av“r§>’°m y 0V " 18°pq : v ,g‘qu )
ozt s AV 0V, 8
W Wy 5 WV WV
dzt, s EAveE IVt T f

ag” . .0 il
6a;ipq o =2, or 1 (81m* pI )= 8 (5i e z Py 5im'”]qx P)
s
du® . ; 0 j ~ ]
A s = s o, ( Ve g ) =gy, (alpu’ -+ &l pul) — " pu? (2.6)
s 44

ag” 24 3uAp

= =0
avk‘zls avkxls

To simplify the final formulas, we shall further assume that £* is the length of the arc

along the corresponding world line*, with u/ = z’y, g g = +1.
(see footnote on the next page)
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In determining the derivatives of U up, 7 r & pe and V "y u°p with respect
to x* and kals , use should be made of the formula

o m o .n
Vou ,=Vigu, 2z,

and it should be taken into account that </ r 8°pg, and V r u®p are dependent upon
h with the latter being defined by the relationship

only by virtue of I'” f
8
A~ h__ n.p .k gh
r m Fpk @ ma n"}' aiiaim
' .
e E, ln mvkz L= E,h xhlvkxn

i ol
xsand Vi z',

A oh L
=2t (o 2 TR ) =

where tf denotes the partial derivatives of fh with respect to " ; thus E* = 9t j g1,
Using (2. 7) and the formula**
avmun 4 3 6vmuﬂ X. a8
ozt 2l =WV s avkxl =8, " My -
AV ) .
8V:x? o’ =8, u Ny (Tt = 8t — Untt))
8

we find***

footnate from previous page
Regardless of the fact that with such restriction upon £* the relationships w = i,

holds, the following inequalities apply
uF 5 dz* Y

= _“ZL‘?

i oL g .
Sut = 8zl ax‘s” *8‘

This is because after variation of the world lines, £* will no longer be the
length of the arc. A condition that the coordinate £* should represent the length of
the arc even after variation of the world lines would impose undesirable constraints

on the variations

uiujviﬁxj = ()

** Let us note that Equations (2.8) and, consequently, the first three relationships from
Equations (2.9) will have the same form in a metric with sign convention {(+++-) if

we stipulate that
Tl = Bui -+ B, Uy

Here, it has also been taken into account that

e
(9 ghn 1 8zty) zjs = “ghianj
Indeed, if x denotes the determinant of matrix [[z%{l, then

Y% o s 8 (1 b= 1 8 (ox 1 oz 07!,
- o — = — —_— e sufbaurand

oz, T T gt (” az™, ) T 3™, (ax‘ s) z 9zt ™y

1 dx . O 1 . ox .
T e “—'6 4 - ﬁ 4.61& Ehnx’sﬁ"i= -— Ehiﬁni

—_— e e
? ozt z ’6:1:
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AVANR . ) .
P
i 2l = u3vm'rnixmr:c"p + Vmttn (§imx7rx"p -+ Gi";v’px’”r)
8
OV " pu P yAsy kan _dy_"u___
avkzl - T @y P’ FiAvj 3}
s k
~ ~ ~ h
8V rg(’pq ]‘ 6v Tg o1 ar im .

T f P g ~ py x! =
ozt 8 or” oz’ &

= — (8°meDp’ T 8 mpby") (7,878 — 25,87 8)) V!,

P i, k
x‘_.u*rmxrxp

378 OV 1&g T " pr” e e kem (2.9)
avkx‘s = 3F“n,mh 6kazs == mqsp +¢ mpﬁq ) =8
OV "8 pq
avkwts
A0 A .0 A h
avax::‘ * xjs:aavl‘ “::: araz[: alg = — wdp® (7 E™8" — 2 E™ 8))) Ty

A A " o & 8.k pm Ny i m J
3‘7;:”', = ar“umh avkxzs = = w8, 8, avkzis Flg = °mb 3’ g

xis R (gomq6ps 4 gompéqs) xkramt

Substituting (2.6), (2.8} and (2.9) into (1.9) and (1.10), we obtain

i 3 94 9m ik i
Poi ==74538 — 55,07, & i =8 Vi) — TP — a8 =
A, Eﬁg_Bl 4 oA, du” g 07, OV u b _
og,, ot Tt aw” o, T o u, adt, T
A, OV 8%, oA, OV, ( A, OV uty N
f— Fa— [/ - “ r ., — EN Ly
AV SRR U v, ol T \ov L, o
M, 07" g, M, IV u, o
-+ - =3 )(6 V:v — 8, 57.x y —
AVANN'S 5q avkxls tiAv4 oy kam k K Vit 8)
VPJK——A 63"’” .._a___ {513{.5 Il?m 1 Smg_-]xa )....
— Vi mOi = = g~ Em (T T g0 Ty
oA, v g . ; Ay o (2.10)
— au,\p[g‘.i(zpu + @ pu Y P %] —av,\ruAp[u Vanlni & % 5 -+
m J 2" aAm s
+ Vinttn (8 22" 4 8% r)]+5'v~—g—p"(gmqp+gmp o) (@ B8
q
, oA . .
k 4 m ° k k,mgi l
—a E"8 ) Ve, + N, w8, (2 B8 — 2 ET8)) Vs —
My e g 6Am -
{8V"r u s"'nlx rxnp av rg (g fmqap +g mp qs)x i -

aAm ° % H 3 d H ik ?
- 8v" u’ u mgmlx réps} (6i vkxjs - ak{vix s) - vkpi} - Am§i7
rTp
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T

1 3A k)]
=" ‘""{av Ft e W, OV,
aAm avl\rgf,l)fi lj + aAmQ avaru:o
o € »q avkwts ¢ QV % P avkxts

8
-t -~a~i\—ln~:—-uq'r A -——*AL(g 5.°+
2 AVAR » n> " m” p AV 4 na meTp

1 H oA, 0V u",

+ AR CTIE

(2.11)

© oA i &k .
+ 8 meb) T wp ) € k)}

All the terms containing \‘,?kxai, cancel as expected. This confirms the fact that for

the system of arguments (2.1), the tensors P(m)‘:: and pgk are independent of the choice

of the associated system of reference.

Equations (2.10) and (2.11) give in the associated frame of reference, the following

expressions for the contravariant components of the canonical tensor of energy impulse
P(:n)i’ and for the tensor P "17¥ associated with the internal angular momentum and the

internal surface momentums*

~is aA. 6A A aA .
ij o9 ' m _ ...._,_ i » b [ 75 I
Pmy = 26g““- ( + 1)+(”’ Riu )u u
A . A s ~} ~ ~ijk A
“.—/.-..r?_x-vﬁr(uhjrr pl+u !6p2)——-v kp ¥ ‘—"'Amg ti
o "yu »
o oA A (2.12)
AL N ks SLY WA SO e
P - 2 [(avhk“Apu s 2g i W()V x8° tu

Equations of motion (1.17) appear in this case in the form
VPt + AR it =

oA, 8A,, N Ay,

AT ¥, ~qji ="k e —
av s + 8"t IV 2% K POVTiv"p
3A, 9A,, 4 . .. 0A, (2.13)

—2p° B x U I e —
2g 1q avAjgoqk u FAv] juok + 5 M v K «p
- 6Afn 1 s A o 6Am
A~ A O e 78 -
— g 33g lpg sq awv Akgo-p; 2 g g lpu sav Aruop

3. A generalisation of the model of an elastic body. As an example we shall consider,

within the framework of the Special Theory of Relativity (A= A,)), a system of equations

describing the model of an elastic body whose characteristic parameters include deriv-
atives with respect to time and coordinstes of the tensor of finite deformations, As we

know [3], in this case it is nor possible to derive all the equations of state from the [irst
law of thermodynamics and it is necessary to use the variational principle.

* In the derivation of Equations {2.12) use was made of the identity

A o . - LY |
V @p=T pV
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Let us first determine the tensor of finite deformations in the Special Theory {and
analogously, in the General Theory of Relativity). In defining this tensor, it is necessary
to remember that the distance in a three-dimensional space (that is, the distance between
two simultaneous events) which can be defined by means of the quantity Yij ([3] p. 286)

2 — [P, . s - .
— dI® = vyap dz2daP, Vi = &ij — Bis&ia | Gasr Yis == Ygi = 0
For the purpose of measurement of three-dimensional distances in the associated
reference system tensor [4]
T pg =8 pg— U pl 4
can be constructed, where y " p, , by virtue of Equations (2.3), coincides with
€ s — & ps8 qal 8 14 in the system £, In a system of coordinates which is not an
associated system,components of the tensor gpg— Uplly, naturally no longer define a
three-dimensional distance. For the purpose of description of a deformation it is necessary
to equate the element of length di? (§%, £, JE%) with the element of length in the initial
state, that is with 4|2 (E%, E %, dE*) = dl¢® (indeed, an element of length between two
simultaneous events in the associated reference system is a fourdimensional invariant
—di?= Y opdE2dEP = v" ;,dEPAEY). The element of length in the initial state is des-
cribed by the tensor field Ypq®

dle? = vypo° dEPAEY, vp° (8%, &Y = Y pa (8% &o*) = gpo° — wp°uy”

. . . 3.1
Bt =const, V' p® 0, v = vp =0

The tensor of finite deformations E“m is constructed as follows** i«

a ~ 1 ~ o - -
-—%—(dl’——-dloz)zE mdgpdgqv E pq:""g“('r pa— T'pg)s £ pm=E"4g=0

Let us note that the tensor field quo, formed according te (3.1) does not depend on
the particular associated system in which it was formulated (by virtue of (2.5) and of rela~
tionship ¥ ps = Y 4p = 0). Therefore the present determination of the finite deforma~
tions is the expected one.

Let us now assume that the defining parameters include the quantities

o . - ~ pra aC
g°re,  u®, u'p, ETp, VT ET, K

* In the metric with a sign convention (+++-) Y ., = & pq + u”pn"y, since in that
case equations (2.3) can altemnatively be written

A

p Ea)
) _ -

u’\pzv:rj./‘_.._, U P __.E.___:—
— § 44 V—-—g 44

** In the present analysis the following sign convention is nsed for metric (———+), For

the metric {+++—) the tensor of finite deformation is expressed in the form

Equ=11’(2 (TAPQ‘TOPQ)
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and K C, was considered

The case when the arguments of A include g™, E~ s

q’
in the Special Theory of Relativity by Sedov [1] while thep analogous problem in the
Newtonian mechanics is a classical one. The model, considered in [8] within the frame-
work of Newtonian mechanics, had amongst its parameters the space derivatives of the
tensor of finite deformations, The present model is a model of an elastic body whose

Lagrangian depends upon the first time derivatives of the defining parameters.

Equations (1.9) and (1.10), {or, for the present model (2.12)), are the required equa-
tions of state. By

BE“, - 1 s anLs _1‘
3g~p:-——-‘“( 804"+ 05°84), W, 5 (07”5 48, u™)
o7~ E” 0V " REY 1 pesn  a ~ o a
._...(;éi,\_li:(), ~—.au—n:————8=~§“(6arv mli ;+6lpv mit s).
Pq n
avA EA[ 1 q ~ ~
_ﬁ_;z:_;_s=76m' (dFu"s + 8 u"y)
IV RE", LG ramsa P q O "mE 14 1 arapo P, -
mzzém 8,°8,° -+ 8,"8;%), EvATS ""“2"617; (8" u® + 98, u)

we obtains from Formulas (2.12), the following expressions for the contravariant compon-
ents of the tensor of the energy impulse P 7, i/ and of the tensor P ik

oA ~;f OA A oA ~; i OA ~ OA
O — ——) — I e R
Poi=P =g, ¢ ‘(bunj u anAm) u kauﬁi—!—u . 6E“qi) +
A oA o A s
é‘u Zu 3(“ pa ~ +u pu an )+av E“ ?'(T ptT QJ)”
——V kp ”h"—Ag
~“iik 1 A Ax A 2 P ™18 o BA .
plii =——§L(u o4 pz__aprg i o) a————~»-———vAkEhm+(]<—>k)]

After simple transformations, we obtain for the components of the tensor P;'§ with
mixed indices,

A e i 0A N\ n i dointy) S
P =" q](aEA -V kW) (r ipe " 4 d57u ") p+

JA
4 V" k('}’ wtd T HE o

& (3.2)
P = S (1 g T )
+E"yq (ﬁ"’a_%""“ + 5&7"%\2—2;)
The tensor of the energy impulse is in this case anti symmetric. Introducing the
density p according to
=0 V1 /V1", 1 =det|1°%u), 7" =det|r asl (3.3)

and bearing in mind the relationships
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ghuBY*Sa = 8, ap / aEMcB = — 269 / aYAaB = pg*®
we can write the equations for the spatial part of the energy impulse tensor in the form
- 9(A/p) ~ prapk oA
P ﬂﬂzp = -V kp — e VT ~ Yt B (3.4)
3E” T E k(175 770)

Apart from the associated reference system we shall introduce at every point of the
space<time continuum a so called proper system of coordinates, which is an ortho-normalized
rectilinear reference system in which the element of a medium present at a given point of
the space-time continuum, is at rest. The quantities computed with respect to this coordi-
nate system will be identified by an asterisk. It is known that in the proper coordinate
system the spatial part of the energy impulse tensor P**Bhas the meaning of a stress
tensor taken with an opposite sign

P = — me {3.5)

Here pa"B is the stress tensor. In this way, equations (3.4) written for the proper
system of coordinates give the expression for the stress tensor. In particular, if
A = A (g°P9, u®?, E™,) (a classical elastic body), then

(A
P = —p ___._;E‘i ‘;) (3.6)
Let us now postulate that in the proper system of coordinates the laws of thermo~
dynamics (and consequently the thermodynamic relationships) should have the same from

as in the nonrelativistic mechanics. Then

P8 — A (3.7

Where U is the intenal energy per unit mass, Comparison of Equations (3.6) and (3.7)
gives

It also follows from (3.2) that P" * = pU.

In this particular case the stress tensor is symmetric. However, if the arguments of A
include the gradients of the tensor of finite deformations, then p“ﬁ == pBa since
PaBk =L pBak, 1y ghould also be noted that the stress tensor is a linear function of
acceleration of the particles of the medium. This phenomenon has no analagy in non~
relativistic mechanics.

For the purpose of defining the components of the tensor of stresses within the frame-
work of the Newtonian mechanics, it is sufficient to perform a formal operation in Equation
{3.4), namely*

Vs =% V=08 ¥.t=0

* This follows from the equations
(continued at the top of the next page)
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(continued from previous page) . .
SE” = (1" i + 17 )V,
A - a s oA N e s . N (3.9),
87" B = [V (T AT IV (8) +

~

F R 1 g ) (B8 + E708,) v, (82)

Indeed, if (3.4) is to give an expression for the stress tensor in nonrelativistic mech-

~

anics, it is necessary that 8E°,, and 8V " E"p; coincide atp, g=1,2,3 andr=1,

2, 3, 4 with the variations of the Newtonian tensor of deformations e'\aﬂ= (8" ap — 8°ap) /2
and of its gradients; g" ap is here a metric tensor in the associated reference system in a
normal space, and obviously E" g = €" 43- If we note that the following relationships

are valid:

8" pg =12 (8,%8,° + 8,°5,°) V "o (82,)"
&V AYaAaB = [ (8.%65° + 8,°5,%) — (e A 28+ "smaaa)] v "Yv " (61:“,) "

A A 19" 1 PO R
VAR u,,,=as_c~a$a:lfa =§(5¢°55“’+6;6,"’)v WV o (82,)

then it becomes obvious that the formal operation indicated in the text does indeed lead to
an expression for the Newtonian stress tensor. Let us note that Formulas (3.8) remain
valid only in the case when the metric of the space~time manifold is not subjected to
variations (6gi5 = 0), and the last of them is valid only in space of zero curvature,
since it is based upon

2

. 2
—_—t i
66131’—65"6:1’

which ceases to hold when the curvature tensor Rijkl is different from zero.

In that case, the last term of (3.4) becomes zero, and the stress tensor assumes the
form
~ 2 (A ~ ~ apk
P“B=—p%%?+v"" ’ (3.9
Comparison of (3.9) for the model of a classical elastic body, with the formula (3.7)
written in the associated reference system, shows that in the Newtonian mechanics it is
possible to stipulate that A = p (U + f) where f is independent of the tensor of finite
deformations. If we assume that A = p (U + f) where the internal energy U contains the
tensor of finite deformations and its spacial derivatives while f remains independent of
the latter, then (3.9) becomes identical with the equations of state which follow from the
first law of thermodynamics for reversible processes*. If A contains also a derivative of

* In the nonrelativistic mechanics of continuous media, the equations of state follow
from the first law of thermodynamics [1 to 5]

1 1 1
.1 a8 = =
AU = — p**g v, dt+ pdq(')+ 2 da**

where dq(e) is the inflow of heat and d¢** is an adiabatic flow of energy.

(continued on the next page)
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the tensor of finite deformations with respect to time, then (3.9) contains an additional
term V™, P " 284 yhich cannot be obtained from the first law of thermodynamics.

Let us now write the expressions for the components of tensor Pf;« with a time~
component in the proper reference system of one of the particles of the medium. Bearing
in mind that in the proper reference system,

Y¥ag = g*apy YHP = graB, pEE = Vi = Y5 = v Kk —0
g = g% = g% = — gry = —1, w* =u¥ = 1, u** =u*; =0

du*, | 0z'F = gu** | 9z = 0

we have
A du*
*ad _ D* B (310)
PrE = Pr = Py = — A — au~ + 2 O (B> 5] 0x*h) 5%
K [E* . aA A ﬂ
ox' LT 7 (6(8E*q4 J 8z"F) T 8 (OE™ gk | 01™%)
pra___ A 1 A du*g n oA du*g
! Wt 2 9 (3,4 ) 02" F) ax*k 2 3(0E* g,/ 9x°%) 0z
3A aA
- i ( T + a )]
oz kL 3 (3E*,, [ 02™F) T 8 (OE* ;[ 02"")
A du*
* 4 __
Pt = —gu” ( gury T 7 3(9E%,, |02 6’2:*")

(continued from previous page)
Introducing displacements W = v,dt, one may write

1 1 1
aU = ;P“BVB wa + qu(e) + A

The construction of models in the Newtonian mechanics involves various assumptions
with refer to the arguments of U/ and the form of dq( €) and dq‘“'

In particular, if it is assumed that/ — U (g 2BE” .8, V "yE " ag, S), that the pro=
cesses in each small particle are reversible (p~ld¢'® == T'dS) and that dg** is the flow
of energy across the boundary of each small particle dg** — 7 QY, where
0" = QaBYnga‘ with Q7= Q*'P, then one finds from (3.9) that the comesponding
equations of state obtained by the variational principle and from the first law of thermo-
dynamics are identical. It should be noted that the adiabatic flow of energy d¢** depends
in this case on the angular velocities, whilst the latter do not affect the internal energy.
Models for which the internal energy is a function of the tensor of finite deformations and
its spatial derivatives, and the quantity d¢** is independent of the angular velocities
were considered by Idin [9]. In the derivation of the corresponding models by means of
the variational principle, it is necessary to stipulate that the function S * differs from
zero.
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8 11 dA oA 9A
T 427k [? T*ap'f*qk 0 (OE*,, [ 0x*4) + E¥a (3 (()E‘qdax*k) + J (OE* 5, [ 92%) )]

For the models of a classical elastic body in the Special Theory of Relativity
A = A (g°P9, u°?, E"pq) it was shown that A is the density of interal energy (with a
reverse sign) which, together with Equation (3.10) shows that P** = pU. A study
of more complex models, for instance A = A (g°77, u®?, u"?, E%;)or A=
A(g°Pe, u°?, E"py, V"r E™pg) will immediately show that P* 4 =t — A, For
such models, a question obviously arises as to what should be defined as the internal

energy density, P*,* or (~ A).

The quantities P*% represent, in spatial transformations, the components of a three-
dimensional vector which determines the adiabatic inflow of energy to a particle of the
medium. In the case of classical elasticity A = A (g°P%, u°?, E” ;) there is no
adiabatic inflow of energy. If the defining parameters include the gradients of deformations,
then this inflow of energy is quite substantial and cannot be ignored. The components of
the energy impulse tensor P*,4 and P"_ 4 are, for such models, different from zero.
This shows that in the proper reference system in which the particle of the medium is
stationary, as well as in the associated reference system in which the whole continuum
is at rest, there is, nevertheless, a macroscopic transfer of momentum. This arises
because of the adiabatic flow of energy which, as it is known, produces a flow of moment-
um. Also, the macroscopic transfer of momentum is connected with the presence of an
internal moment of momentum {since p*ij == P*ii ). The terms in the expression for
P*.,%  have no snalogues in the nonrelativistic mechanics.

Equations of state (3.2), together with the equations of motion (1.18) form a seli«
contained system which fully describes the given model of a continuous medium in the
Special Theory. In the General Theory, the divergence of the canonical tensor of the
energy impulse does not as a rule become equal to zero. P(m)‘j will in that case be de-
fined by Equation (1.17) which assumes the following form for the medium under consider~

ation:

vAjPA(m)ij + AR G =0

as A oA 1 ; aA
A 3kt=u‘\k . w” '——ALA —’}"oz —T""E;—-’*}- iy u‘; "t '——:‘m‘x“*“
T Wl 2 5~ E . TG E g T2 P e T ET
oA

1 a5 a0 m
—_— =g Jsgl'f P
2 ol 9 G E " g

4. A generalisation of the model of an ideal compressible fluid. As another example,
let us consider within the framework of the Special Theory some generalisation of the
model of an ideal compressible fluid for the case when 8W* = 0, Let the defining para=
meters include the quantities

g'*e, u'r, p, dp/oEk
The corresponding model of Newtonian mechanics was considered by Eglit [6] for the

case where the defining parameters included the derivatives of density p with respect to
coordinates, and by Kogarko [7] for the case where the derivatives of p with respect to
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time were involved.

Performing the operations analogous to those carried oat in the previous example, we
obtain the following expressions for the canonical tensor of the energy impulse P "1/

and the tensor of ‘double forces® P "iik in the associated reference system:

oA " A
= u’e —
s (7P )

A kpaijk

P = 2grivghia

ni Ay 7, G
w4 p gy 4
A
3 (9p/aE"

PR %p (7~i5

+ Viklpr H) —V —Ag™H

dA ~ip A >
2 (dp | 9E") 9 (dp | 087)

Tensor M ik describing the internal moment of momentum and internal surface
moments, is in the present case, usually different from zero. Indeed, in accordance with

the definition of Miik , we have
Mk priik _ pridk :_é_p(TAjk A —_— aA : )
' 9 (dp [ OE) 9 (dp / BE")

For M "i% from Equation (4.1), we have
V“kM"iik — p"if — P"j‘i
These relationships are identical with those in (1.14) derived on different assumptions.

In the case of an ideal compressible fluid, when A depends only upon the density p,

the tensor of energy impulse P "/ assumes the form

A memi S OUASD) mgp O ayms
P ”::(‘pa: )g 17-—p—u ‘u J:pz.__ég_g 'I.J.__pa.é,u igti=
p“a“‘“’) — Autini

In this case the tensor of the energy impulse is already symmetric.

Let us now write in the proper reference system the components of the tensor of
energy impulse for an ideal fluid, determined by means of the variational principle,
together with the expressions which were obtained for those components on the basis of

the relativistic mechanics of continuous media[3]:

(4.2
(A
—-pZ——{ap/p) 0 0 0
3 (A /p) p 000
. 0 — pE 0 0 .
” PuJ”: P ap , “ Puu llz 0 P g0
0 0 ,2/(A/p) o 00p0
P ap 0 00 plU
0 0 0 —A

where U is the internal energy per unit mass, as measured by the observer in the proper

reference system of each element of the fluid; p is the pressure, where in accordance
with the first law of thermodyaamics p = p

29U | dp. Equating the matrices of (4.2)
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leads us to conclusion®*, that
A= —pU

Let us now consider the properties of the energy impulse tensor in the particular
case of an ideal compressible fluid whose’internal energy is a function of the derivative

of density p with respect to time.

()’p ApTTA % aP
il AV [ R .
s u kP aak

The individual study of such a model is of interest because, as shown by Kogarko
[7] in Newtonian mechanics that, the model of cavitating fluid, as it happens, corresponds

to the dependence of the internal energy on the time derivative of the density.

Let us assume that

= —p (At Aa)y Ai=As(p), A=A (5E) =5 A @7V "5p) (@ 97" p)
where A is a scalar not subject to variation. From (4.1) we obtain**

Ny 1, ,d% o
P = "“(Px + PAS”—EkpzdsJ 4 (PA1 ( "P2 )) urtutt + s
—{-V“(z—lp’a—u'@)

Here Py = piA, / Jp. The tensor of energy impulse is no longer symmetric, and
it becomes necessary to take into account also the internal angular momentam of the fluid,
connected with the tensor

Maiik = prik _ pridk _ _é_xpﬁ%(frakiul\j_,rakjuai) —

i d iyg n NI ITEY]
= — 5 hp? ZE (g Furi — gnKiuni)

* In a metric with the sign convention {+++~) A = pU. This result was reached by
Schopf [4] who used the variational principle in a different form and differently de~
fined variations.

** Here wehave also used the continuity equation \va k(puhk) = 0. Indeed, taking into
account the relationship det g 4j|| = g "= v g ", it is easy to verify that density
p, as given by (3.3) satisfies the principle of conservation of mass [4]

N N 1 3 —_—
\vj k (pu k) B V———g" “’"‘aﬁk (V_ g'\ u' k) =
k

B
Ve )V A VT =

1 a
e Aver
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Here also

~aBk ~agk __ agak Lo odp g
M =0, M = —M = 5 Ap i &
But

VM0, TNM S — L (bt O gear)

The stress tensor is also no longer symmetric, and in the proper coordinate system
we have for it, from (4.3),

P* = ( P+ pAs— 3 M T2 ) g — ;T (5 hpt 2 )

gl = g*I% — g¥38 — g**8 = 0 when ot =&

Here, just asin the Newtonian mechanics, the stress tensor is a linear function of the
second time derivatives of p but, unlike in Kogarko’s model, the stress tensor is not
spherical.

Let us write down the expressions for the following components of the energy impulse
tensor

a 8 1 d
P*F = 6:::‘*( ?vp“ u*“) P* 4 = Py (-2— Ap? E%)’ PrA — oA,y (4.9)

This equation shows that, in the present model of the fluid, each particle experiences
an adisbatic inflow of energy which is described by a three-dimensional vector P* =,
This inflow of energy depends not only on the first and second time derivatives of the
density of the particle, but also of its acceleration. In addition, in the associated refer
ence system, there is a macroscopic transfer of momentum which is defined by a three~
dimensional vector P*,4, Equation (4.4) also shows that the components of vector P¥,*
are not identical to (~ A).

Internal energy U, in general also contains the entropy S as one of its arguments.
However, if S were included in the arguments of A, one would obtain

oA
3T = 0
For the model of an ideal fluid one would thus have
ou _
as

The latter is a result of the assumption that SW* = (. Since, for an arbitrary
process 9/ [ 08 = 0, it is necessary to assume that W* includes the integral

| Qaduadr
)

425 the corresponding component of QA per unit mass has the dimension of

where for y
absolute temperature T, and the integral appearing in 8 W* is of the form

§ pT8S dt

As the Lagrangian of an ideal {luid or an elastic body one can take not only the
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internal energy, but also any other thermodynamic potential, such as, for instance, the

density of the free energy p F. In this case, the expression for the stress tensor will

remain the same, but the component P” 2 will have a different meaning, namely
P** = pF. Since the arguments of the free energy F include the absolute temperature,

the integral over the region ¥, appearing in §W*, will be in the form

_ gprT dv

The aunthor wishes to thank L.I. Sedov for valnable advice received in the course of

this work and in the preparation of this manuscript.
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