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We present a formal method of construction of models of continuaus media within the 

framework of the General Theory of Relativity. Starting from the variational principle 
formulated in [I], we obtain the equations of state, together with a closed system of dif- 

ferential equations describing the continuous medium, the determining parameters of which 
include the first and second derivatives of the laws of motion and of the field functions. 
We note that a continuous medium is characterised by three, generally distinct, tensors of 

the energy impulse. We consider a series of models; we also show how it is possible to 

arrive from the derived formulas to the corresponding expressions in the Newtoniau mech- 
anics. 

1. General procedure tn the cons~ction of models of cont~uous media. Let US 

consider the construction of models of continuous media by means of the variational prin- 
ciple expressed in the form [l] 

(1.1) 

Here V is aa arbitrary volume of a foupdimensional Riemann manifold of states G, h 

is a Lagrangian which we shall regard ES a four-dimensional scalar, and 6 W* is the given 
functional. The quantity 6W is expressed as ~tl integral along the boundary of the volume 
V, the boundary being a three-dimension81 region 2, of a linear combination of the varia- 
tions of the defining parameters and their derivatives, and it is fully determinable if func- 
tions A and 6W, are known. 

The model of the continuous medium will be defined if the Lagrangian A snd 6W* are 

known. For instance, for a model of an ideal fluid with reversible processes in the Special 
Theory of Relativity we have, as will be shown later, A = - p U@ S), where p is the dens- 
ity of the rest mass of the fluid, U is the internal energy and S is the entropy. 

Further we shalI assume that the arguments of .4 include the following quantities: 
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608 V.L. Berdichevskii 

Here* , gii are the components of the metric tensor of the space-time manifold G in 

the reference system of the observer, the coordinates of which are denoted by xi and ep 

are the coordinates in the associated frame of reference, with the coordinate lines 5” 

coinciding with the world lines of the particles of the medinm the Lagrangian coordinates 

of which are p, e and 4‘“. -Functions xi Cp), defined in some region of the manifold G, 

fully describe the motion of the medium **. When the associated frame of reference is assumed 

fixed, the complex zip = dzi / tjgP forms s vector of index i in the reference system 

of the observer. All the covarisut derivatives, corresponding to the symbol VJ~ , are 

taken in the reference system z’, i.e. 

The variables p A describe either the state of the medium (temperature, magnetisation, 

curvature and rotation of a set of fault-free states in a continuous theory of dislocations, 

etc.), or the fields present (for instance, electromagnetic). The constant quantities I( C 

describe the properties of the medium (anisotropy, dielectric permesbility, metric tensor 

of the set of initial states, etc.). 

In the works of Sedov [l and 21 a detailed study was made of the case when the 

Lagrangian depends ypon zi (@), and p* (S’) and their first derivatives. The inclusion 

of the gradients of 2’ and Vj PA 

P 

into the arguments of h makes it possible to tske into 

account some new e fects such as the internal moment of momentum of the continuous 

medium. 

In Equation (1.11, pA is subjected to variations together with the metric of the 

manifold G 

‘gij = gij’ (X) - gjj (X) 

and the trajectories of the particIes of the medium 

As usual, vector 6x” isthe principal, linear in E , part of tbe difference ii - xjt”. 

When #, assumed to be attached to the points of the mediam are varied, it is necessary 

l All lower case italics i, j, k, p, q, . . . . range through the values 1. 2, 3 and 4, while the 

capital indices A, B and C, can correspond to one or more tensorial indices (an anal- 

ogous convention could also be constmcted for the spinor indices A, B and Cl. Lower 

case grcek letters a,/!& y, . . . range through the values 1, 2 and 3 and correspond to the 

spatial coordinates. 

** It should be noted that the present analysis is confined to the case of homogeneous 
media where 12 does not explicitly depend upon xi or P. 
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to distinguish between the full variation 6~” and the variation of @ 
A 

at the point 

x- GpA. By definition*, 

,+,A z Ill’-4 (5’ (Q)]= - /.t* (5 (t)) = d}t” f- 6si Vi /A~ 

Here [it’s (X’(Q) I= denotes the result of a parallel translation of 1-1 ‘A (x) from the 

point x’to x, i.e. 

It is not difficult to verify the following expressions: 

ikc$ = [l’$ (s’)]= - fiP (X) = z’ip (x’ (E)) +rpl$P*GX~ - rpi (5 (Ef) zz 

= axip + 8x1 VlX$ 

6 cikXip = 8 'c7kXip + 6x1 v~v$+p = vk axi, + a Vf& 
I__ art,” + 6x’ vp7h.x”p = ar 

1-c 
a v&p ;= Vk (Sip Vj8Xi - 8X2 V)Xip) + p 
arl*n 

ar1,” + 6x’ V&&x$ = 

= 8x” (V~V,Zip - 

+ 5jp VkVi6xi -/- 

8 VjpA = VjdpA + 

a v.pA =I vjsCtA + 6~~ (ViVjpA - VjV$tA) -- (V$Xi) V$tA $- e 8rrP 

fm7’ 

a V,FA‘ 

( 
a vjpA 

= 0, ViapA + ar 

hln 
62 + 1 a wAe 

2 di’~,,,” + 8xi ViV,VjpA = V,V&,A + 
ar,lnn 

+ Qd (V*V,VjpA - V.cVjViPA) - VkSX’ (63 kV,VipA + 6, “VjVip’) - 

* Usually 6~’ is defined thus: 6,~~ = p’* (x’) - y” (z), where &pA is no longer a 

tensor. This definition, however, has some disadvantages ; thus, for instance, the 
quantities KC (6K” = 0) which were not variable in the first definition, must be re- 

garded as variable in the second. The use of variations &A is possible by virtue of 
the equality 

&A = A ljP(t’)) - n @LA4 (s)) = [A (p’A(X’))]=- A (J.&)) = A ff~‘A(z’)]=)-A (J.@(5)) 
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Here, p! denotes tensor VjpA, 
derivative with respect to rim” 

and the symbol aVSpAj / ~?r/~” shows that the 

should be taken of the first covariant derivative of tensor 
A 

p . 9 and not of the second A. 

Christoffel symbol dlTiltln, 

covariant derivative of tensor p The variation of’the 

appearing in the above formulas is a tensor of third rank 

which can be expressed in terms of the covariant derivatives of variations of the metric 

The variations of the metric can be canveniently expressed by [2] 

dgij = a*gij + vi7 j + vivj 

where vi is an arbitrary small covector. In the special theory of relativity (where the 

tensor of the curvature of tke space-time manifold Rijl,’ = 0) ,by definition i3*gij = 0, 

and it is easily seen that the changes of the metric O~Q + Vjqit leave the tensor of 

curvature &jkl equal to zero, i.e. they remain within tke Euclidian space. 

Using the above variational formulas and the equality 

one can write* : 
V”At”S + VQ = Xl 

djAdr= j{ - t_ @a*g,, + qi vjw + M&d + x&z’) dz - 

Here, ql is the vector of the normal to x:, an d other symbols kave the following 

meaning** : 

* 

** 

It should be borne in mind that the coefficients of the variation 8%’ appearing in the 

surface integral, will be different, depending on whether the variations in the corres- 

ponding terms are apA orS#. Because of this, it is possible to have different definitions 

for tensor P<. 

In the derivation of Equations (1.2) to (1.10) tke fact that both, 12 and the volume Y of 

the space-time manifold G are subjected to variations, was taken into account. For tke 

purpose of variations of an aIement of volume, one can use the formula 
- 

6 (dt) = (8 1/---g / f-2 +V&+) ds, g = d&1( gij 11 
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+ v,$j’ + f ac;;ppA as B,,,,‘tkpl’(ll~kqlRrJ + l~,k,J6Q’) 
Irn 

nlA = aF-vj, $$I + QiQi aVg,pA 
J I 3 

(1.3) 

(1.4) 

_ ?!.A_ VjVip* - aA 
aV jP* msw* 

V,VjVi~* - $ ViK'- 5 ViVjK’ + 
av+b 

(1.5) 

aA 
- 

a (azg,, 1 axkdd) 
(I‘kpi6Qj + &jdpi) 

q-W = + -- 

X BkmnliJ + v, [+ aV8;ppA as Bkn?j + (i ++ d] (1.6) 

S ijkl aVpp* B niij 
=- 

+avrGpp* ar,,a Qm + (k-- 01 
(1.7) 

ah pAj =_-_ 9 

aV jpA 
VlPA v PA 

j’=__!_ 
[ 

ah 

2 aVC7jp* 
+(i4 I (1.8) 

p4j z V+* aif, + 
Wjp 

aV T 
8 k 

PA (dkjV,V#* + G*jVkV$*) - d8$ - 
B 

- --$-- (6!Vkzjs - 8, iV&?$,) - VlPij’ - h6ij (1.9) 
k a 

Symbol (k + 1) in Equations (1.21 to (1.10) indicates, that the term followed by it should 

be supplemented with another term, identical to it, but with the suffices k and 1 iuter- 

changed. Tensor R I ijk appearing in (1.2) and (1.4) is the tensor of curvature of the space- 

time manifold. 

It is easily seen, that the tensors Pij, pii’, etc. thus defined together with V 
dependin general, on the choice of the associated reference system, since the latter 

affects the tensor Vkxjn. It will be assumed later that the function A and the components 

of the tensors pij, pill, etc it d f e ines given in the observers references system, do not 

depend on the choice of the associated frame of reference. This assumption will be valid 
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when, for instance, V&zip are included in A in the following manner: first x’ is con- 

tracted in p with some tensor QBp, 
P 

and then derivative Vr is taken. Such approach was 

adopted in the majority of earlier models. 

We shall further consider the processes when 

6w* = 0 

The definition of 6 I?‘* is an entirely separate problem which wiIl not be considered in 

this paper. 

Assuming that the variations of the variables and their derivatives are equal to zero 

on 2 and that 82’ is given as an integral with respect to 2 of linear combinations of 

variations of the variables and their derivatives, we obtain from (1.1) 

@*; = 0, if d*g*j + 0, VjW = 0, MA = 0, xi = 0 (1.11) 

In addition, we have from equation (1.1) for the variations differing from zero on c 

Equation (1.1) is a generalised form of the principle of conservation of energy and 

it contains terms describing the work done by virtual changes (variations) in the metric, 

field functions and trajectories of the particles of the medium. Let us examine the indivi- 

dual terms entering 6 W to see what are energy contributions and states. The tensor Pij 

performs work during changes in the world lines of the particles of the medium at the 

boundary of region V ; i.e. it express to the four-dimensional generalisation of a three- 

dimensional stress tensor a tensor of the energy impulse. Apart from Pii, some work is 

done during changes in the trajectory by some double forces Pi j1 which will be defined more 

accurately later. The terms of 6W, containing tensors @i-j, $31, and ,!j%*l, define the 

work associated with changes in the metric, but the physical sense of tensors PA 1 and 

PA iL depends on the nature of the quantities F(‘. 

The laws of conservation of energy involving PQ, P$l, PRY, and PAi’, can be 

formulated by means of Netter’s theorem. We stipulate that the integral of the Lagrangian 

A is invariant with respect to the group, containing r parameters, of motions of the 

Riemanian manifold G (i.e. group which does not alter the metric of G), over the four- 

dimensional region V. Let the action of this group on xz and pA produce the following 

variations 

Here &on denotes the parameters of the group, and it is assumed that Vk&e =: 0). 

The corresponding variation of the integral of A over the region V is 

(1.12) 
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From the condition of invariance of the integral of ‘2 taken over the region Y, we 

obtain 

VtFo’ = 0 (a = 1,2, . . . r) (1.13) 

In particular, within the framework of the Special Theory of Relativity in an inertial 

rectilinear reference system for the Lorentz group, whose parameters are the components 

of the antisymmetric tensor &D.., which are 
‘I 

4.4 = MAij~~j 

Equation (1.13) assumes the form 

a&S 
-=: 

pij _ ~33, Mijk = pji” _ pijK + PAkMAij+ PA k2 iMfAij (1.14) 

k 
az’ 

In order to impart physical sense to the components of the tensor Mijk, let us compare 

Equation (1.14) with a three-dimensional non-relativistic equation of the equilibrium of 

the internal moment of momentum expressed in the divergence form : 

11.15) 

Here m”@denotes a tensor of the internal moment of mom~tum, u7 is three- 

dimensional velocity, Q”@Y ’ IS the surface internal momentum, p oP - IS the stress tensor, 

nap is the internal mass momentum. We shall assume in the following that !rafl = 0. 

Since Equations (1.14) and (1.15) can be assumed to represent identical physical 

phenomena (when ho@= 0). we can have 

where c is the velocity of light. 

Thus, the *double forces’ Pii’ are connected with the presence of the internal angular 

momentum. They arise due to the fact that in the present formulation the argument of A 

include gradients of the quantities 2’ p and VjpA; consequently, the models of continu- 

ous media which contain amongst their defining parameters Vkxip or the second deriv- 

atives of the field functions exhibit, in general, an internal angular momentum. 

Let us now examine equations (1.2)-(1.10) more closely on the basis of the General 

Theory of Relativity. One of the basic premises in the general theory is that [3] 

h=R12x-i-h, 

where R is the scalar curvature of the manifold G, A m is the Lagrangian of matter and 

X = const (the arguments which follow can easily be applied also to the case when x is 

a variable). Then, since d*gij # 0 , the first equation of (1.11) applies* and it assumes 

the Einsteinian form : 

* Let us note that in the Special Theory of Relativity Pgij = 0 and the first equation of 

(continued on the next page) 
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&j = $ (ffj - $Rgij) + T’j = () 

. . I 

where R’l is Ricci’s tensor, and T ‘1 denotes 

By virtue of VjQij = 0 and Bianchi’s identities, tensor T if satisfies the equation 

VjTij = 0 

By virtue of this condition, it is sssumed in the Special Theory of Relativity that Tif 

is a tensor of energy impulse. .4s shown in Equation (1.16), the right-hand aide of 

Einstein’s equation denoted by T ‘i, contains, in general, also a tensor of curvature of the 

time-ispace manifold RijkL . 

Let now assume tha the Lagrangian of matter Am is a function of dgij / &$ and 

@gij / &&I$ only by virtue of the covariant derivatives Vi, and ViVj. Then, the 

last equation of (1.11) can easily be put in the form: 

(1.171 

where Pt,,,,f denotes the tensor defined by Equation (1.9) but with A replaced by Am, In 

the Special Theory of Relativity, Equation (1.17) assumes the usual form 

VjP(*t?; = 0 (1.18) 

In the General Theory, the divergence of the tensor P[,,i, which is a canonical 

tensor of the energy impulse, does no longer in general, reduce to zero, but is expressible 

as a linear function of the tensor of curvature Rgjk, in accordance with Equation (1.17). 

.- 

(continued from pre$ous page) 

(1.11) is absent; 0‘1 is defined by the second equation of (1.11). The only change of the 

metric which is allowed by the Special Theory is a**gij = V,vj -i_Vj+, which, broadly 

speaking, corresponds to the transition to a non-inertial reference system. At the same 

time, in the equation definining the balance of energy additional terms (1.1) 

appear. 
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Thus, in general case, there are three distinct tensors of the energy impulse: aym- 

metricai T ‘f, canonical Ptrn) i and P ij where 

Jr2 = !(,a) ij - $HBi’ 
_I 

. . . . 
In some models, 7:) and T’j are identical. This occurs, for instance, in the media 

n 
in which Am==&,, (g*,,, KC), where 6 INI is a metric tensor in the associated reference 

system. Such media include the ideal fluid, since its density p can be expressed in terms 

of g”,, (cf. Equations (3.3) and (2.3)). 

2. Deformable elastic media. We shall next consider the models of continuous media 

in which the Lagrangian of matter depends on the quantities 

where un, are the components of the 4-covector representing the velocity in the associ- 

ated reference system, g”pq are the contravariant components of the metric tensor in the 

initial condition, U%J are the component of the I-vector representing the velocity in the 

initial condition, and the symbo1 V A indicates that the covarfant derivatives should be 

calculated in the associated reference system*. 

For definiteness, we shall choose in the time-space manifofd a metric which can, at 

every point, be brought to the form 

gll=ga%=g,s= -g44= --* g, = 0 

with the differential of the arc Iength ds along the world line 

d.9 = gg j dddxj =’ g” 44dE_4’ 

being a real quantity (g-44 > 0) , and the element of the spatial distance a purely im- 

aginary quantity. The radius of the 4-vector of the velocity is, in this convention, positive 

and equal to + 1. Components of the vector u i* rn the observer’s reference system z‘ are 

given by 

By definition we have, in the associated coordinate system 

h 

uAP -_ L, n g P4 

)Ig”* 

u n=g^,U*9 =- 
yrg?ii 

(2.3) 

Also by definition, we shall treat the space of initialeonditions as a Riemann space 

with the metric defined by 

g*PP (P* 2) = gbpqG=, t$h Et = const, VA*gOpq # 0 
A 

* From now on, the symbol will be used to denote that the relevant quantity belongs 

to the associated reference system. Tensors pertaining to the observer’s reference 

system will be shown without this symbol, as before. 
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4-vector of the velocity in the initial conditions will be defined by 

uop (ET, I;‘) = u-p (E”, LJ?, go4 = const, VA,uOp + 0 

Ry definition, tensors s”Pq and u’P will denote 

It can be easily seen that the tensor fields defined in this way depend upon the 

specific associated system in which they were constructed. This, however, will not be the 

case if the reference systems are confined only to those which allow transition from one 

to the other by means of the transformations 

rlx = rll (0, r14 == ? + qJ (E”) (3.4) 

In the following, we shall allow only such associated reference systems for which 

transition formulas will be of the type (2.4). This restriction still leaves us a wide choice 

of the associated reference systems, since in a general case two associated reference 

systems [’ and 7’ (that is, reference systems whose coordinate lines p and 7’ coincide 

with the world lines of the particles of the medium) are connected by the transformation 

l-l= = rla (E% 11’ = q4 (5”, E”) (2.5) 

We shall show that for the system of arguments (2.1) the energy-impulse tensor Pii 

and ‘double’ forces Pi fk, defined by Eq uations (1.9) and (1.10), are independent of the 

choice of the associated reference system (let us recall that equations (1.9) and (1.10) 

contain tensor Yjk zirif which is dependent on the choice of the coordinate system). 

For this purpose we shall have to determine 

agAP, _ xi agApq all-,xj, auAp av^,u-, av np4p av I’ p ., 
_ , 

axi, ,a’ avpls ax’, ” aO,zls’ axi, ’ av&, ’ 
p $ 

av,.l~i. i 

au yps 
XjS’ 

av Argopq av A r f pq 

axis q$$ ’ avkxis 
Xjs 

Taking into account (2.3) we obtain 

ag-pcl - “js 7 xj8 $- (glmxlpxmq) = g,, (6~XjpXmq + 6imxj*x1p) 
aXis s 

TO simplify the final formulas, we shall further assume that E’ is the length of the arc 

along the corresponding world line*, with uj = zJd, g“44 = +I_ 
(see footnote on the next page) 
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In determining the derivatives of v : u”~, v* f go,,, and V “r UoP with respect 

to z’s and Vkxts , use should be made of the formula 

v”,u^P = v,, u, XT’; “‘“o 

and it should be taken into account that V ‘r goPot and V-r aoP are dependent upon 

CC\ and Vi; zlS only by virtue of f A I,,h, with the latter being defined by the relationship 

Z pnxl~,vkxnl = pnx~pkx”, 

where r”, denotes the partial derivatives of eh with respect to x”; thus t”,= OEh 4 tW. 
Using (2.7) and the formula** 

(2.8) 

we find*** 

1 

** 

++* 

footnote from previous page 

Regardless of the fact that with such restriction upon e the relationships I& = zjd 

holds, the following inequalities apply 

8u” # 8xj4, 
au” ark4 gx~g+_,xfs 

s ax’s 

This is because after variation of the world lines, (’ will no longer be the 

length of the arc. A condition that the coordinate p should represent the length of 

the arc even after variation of the world lines would impose undesirable constraints 

on the variations 

lb$J~.~~. =r 0 
1 3 

Let us note that Equations (2.8) and, consequently, the first three relationships from 

Equations (2.9) will have the same form in a metric with sign convention (+++-I if 

we stipulate that 

r nl = &I fi r&al 

Here, it has also been taken into account that 

(a~hu j ad,) de = --Ehihis,j 
Indeed, if x denotes the determinant of matrix j]xf//, then 
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= - (g”mq6ps + g”,p6qs) (xj,Em$ik - :‘&“,‘$j) vk”‘s 
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i- 

Qn ao “rgDprl j a&n 

av * & wpiis 
z s + go yiop av,x~, 

av?P q +(1.-k]] --- (z 11) 

. 

1 %I S 1 rs =-- 
2 [i afp” p 

~qThzt 9% ?nx p - av8~;o c?%a~p* + 
F PQ 

+ gompSqS) - a;?uQ 
r 8 

u’,,,) tmi&xkr -I- (i * 4 
I 

All the terms containing VJkzai, cancel as expected. This confirms the fact that for 

the system of arguments (2.1), the tensors P& and pik are independent of the choice 

of the associated system of reference. 

Equations (2.10) and (2.11) give in the associated frame of reference, the following 

expressions for the contravarfant component8 of the canonical tensor of energy impulse 

’ P(k/ and for the tensor P ,Gk associated with the internal angular momentum sad the 

internal surface momentums* 

Equations of motion (1.17) appear in this case in the form 

3. A generalisation of the model of an elastic body. As an example we shall consider, 

within the framework of the Special Theory of Relativity (h = A,), a system of equations 
describing the model of an elastic body whose characteristic parameters include deriv- 
atives with respect to time and coordinates of the tensor of finite deformations. As we 
know 151, in this case it is nor possible to derive all the equations of state from the first 
law of thermodynamics and it is necessary to use the variational principle. 

+ In the derivation of Equations (2.12) use was made of the identity 
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Let us first determine the tensor of finite deformations in the Special Theory (and 

analogously, in the General Theory of Relativity). In defining this tensor, it is necessary 

to remember that the distance in a three-dimensional space (that is, the distance between 

two simultaneous events) which can be defined by means of the quantity yij ([3] p. 286) 

- d12 = yaa dxadxfi, yij = gij - gi4gj4 I g447 vi4 = y4i z 0 

For the purpose of measurement of three-dimensional distances in the associated 

reference system tensor [4] 

TAPn = g”,, - Un$Enit 

can be constructed, where yAPq , by virtue of Equations (2.3), coincides with 

g^,, - gAp4gAo4 f g” 44 in the system 5’ ‘*. In a system of coordinates which is not an 

associated system,components of the tensor gpo-- r$$+, naturaIIy no longer define a 

three-dimensional distance. For the purpose of description of a deformation it is necessary 

to equate the element of length dZ2 (E”, k*, &a) ’ h h wit t e e ement of length in the initial 1 

state,that is with dl2 (Ea, &,4, dga) =: dl 2(* d d u m ee , an element of length between two 

simultaneous events in the associated reference system is a fouNLimaneiona1 invariant 

- dla= yActBdPd5@ = y”,,d@d~q). Th e e ement of length in the initial state is des- 1 

cribed by the tensor field ypqo 

(3.1) 

The tensor of finite deformations Enpq is constructed as follows** :- 

f (dP- dZo2) = E”,dtPdgq, Ehpq = -+f,,-fp,,, JqQ=E*(R=O 

Let us note that the tensor field ypoo, formed according to (3.1) does not depend on 

the particular associated system in which it was formulated (by virtue of (2.5) and of rela- 

tionship y “*4 = ynlp = 0). Therefore the present determination of the finite deforma- 

tions is the expected one. 

Let us now assume that the defining parameters include the quantities 

$PP I 0, u”p, E^,,, V-,E",,, KAC 

* In the metric with a sign convention (+++-I y”,,,! = g^po + nnr~lgAq* since in that 

case equations (2.3) can alternatively be written 

+* In the present analysis the following sign convention is used for metric (---+). For 

the metric (+++-I the tensor of finite deformation is expressed in the form 
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The case when the arguments of ,iz include goPill EApq, and KAc, was considered 

in the Special Theory of Relativity by Sedov [I] while the analogous problem in the 

Newtonian mechanics is a classical one. The model, considered in [S] within the frame- 

work of Newtonian mechanics, had amongst its parameters the space derivatives of the 

tensor of finite deformations, The present model is a model of an elastic body whose 

Lagrangiau depends upon the first time derivatives of the defining parameters. 

Equations (1.9) and (1.10), for, for the present model (2.12)), are the required equa- 

tions of state. By 

we obtains from Formulas (2.12), the following expressions for the contravariant compon- 

ents of the tensor of the energy impulse P&ii and of the tensor P”ijk 

P *ijk 1 i =-- u 
2 I( 

&nUhjTnpi _ ijP3g hiSrOSJ at AkE:‘^ dA p4 + (i-4] 

After simple transformations, we obtain for the components of the tensor P;f with 
mixed indices, 

The tensor of the energy impulse is in this case anti symmetric. Introducing 

density p according to 

the 

(3.3) 

and bearing in mind the relationships 
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we can write the equations for the spatial part of the energy impulse tensor in the form 

Apart from the associated reference system we shall introduce at every point of the 
space-time cont~num a so called proper system of coordinates, which is an orthoaonnalized 
rectilinear reference system in which the element of a medium present at a given point of 
the apacwtime continuum, is at rest. The quantities computed with respect to this coordi- 

nate system will be identified by an asterisk, It is known that in the proper coordinate 
system the spatial part of the energy impulse tensor P*=p has the meaning of a stress 

tensor taken with an opposite sign 

pw = - p”0 (3.51 

Here pap ’ IS the stress tensor. In this way, equations (3.4) written for the proper 

system of coordinates give the expression for the stress tensor. In particular, if 

A = A (g”aq, zi’p, En pq) (a classical elastic body), then 

(3.6) 

Let us now postulate that in the proper system of coordinates the laws of thermo- 

dynamics (and consequently the thermodynamic relationships) should have the same from 

as in the nonrelativistic mechanics. Then 

(3.7) 

Where U is the internal energy per nnit mass. Comparison of Equations (3.6) and (3.7) 

gives 
A= - PU 

It also follows from (3.2) that PAa = pU. 

In this particular case the stress tensor is symmetric. However, if the argumenta of A 

include the gradients of the tensor of finite deformations, then pa@ # p@a since 
p&k + paok_ It should also be noted that the stress tensor is a linear function of 

acceleration of the particles of the medium. This phenomenon has no analogy in non- 

relativfatic mechanics. 

For the purpose of defining the components of the tensor of stresses within the frame- 

work of the Newtonian mechanics, it is sufficient to perform a formal operation in Equation 

(3.41, namely* 

e This follows from the equations 
[continued at the top of the next page) 
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(3.8). 

Indeed, if (3.4) is to give an expression for the stress tensor in nonrelativistic mech- 

anics, it is necessary that 8E”,, and GV^rE^pc coincide at p, p = 1, 2, 3 and r = 1. 

2, 3, 4 with the variations of the Newtonian tensor of deformations E^,+,,= (g”,8 - go,.& /2 

and of its gradients; g” ob is here a metric tensor in the associated reference system in a 

normal space, and obviously E “ar8 = Ed a$’ If we note that the following relationships 

are valid: 

then it becomes obvious that the formal operation indicated in the text does indeed lead to 

an expression for the Newtonian stress tensor. Let us note that Formulas (3.8) remain 

valid only in the case when the metric of the space-time manifold is not subjected to 

variations (ag*j = O), and the last of them is valid only in space of zero curvature, 

since it is based apon 

which ceases to hold when the curvature tensor RijlC’ is different from zero. 

In that case, the last term of (3.4) becomes zero, and the stress tensor assumes the 

form 

Comparison of (3.9) for the model of a classical elastic body, with the formula (3.7) 

written in the associated reference system, shows that in the Newtonian mechanics it is 

possible to stipulate that h = p (II + f) where f is independent of the tensor of finite 

deformations. If we assume that A = p (II + f) w ere the internal energy II contains the h 

tensor of finite deformations and its spatial derivatives while f remains independent of 

the latter, then (3.9) becomes identical with the eqnations of state which follow from the 

first law of thermodynamics for reversible processes l . If r\ contains also a derivative of 

l In the nonrelativistic mechanics of continuous media, the eqnations of state follow 

from the first law of thermodynamics [I to 51 

dlJ= 
i 

7 j@vp vc dt + id,@) + $dq,, 

where d*e) * IS the inflow of heat and d@* is an adiabatic flow of energy. 

(continued on the next page) 
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the tensor of finite deformations with respect to time, then (3.9) contains an additional 

term V ̂ ,P *a84 , which cannot be obtained from the first law of thermodynamics. 

Let us now write the expressions for the components of tensor Pii with a time- 

component in the proper reference system of one of the particles of the medium. Rearing 

in mind that in the proper reference system, 

g*,, zzz g*22 = g*,, = - gs14 .= - 1, u*4 = u** = 1, u** = gPo: = 0 

au*, / dx’b = au*4 1 dx*k‘ = 0 

we have 

(3101 

(continued from previous page} 
Introducing displacements W, = vadt, one may write 

The construction of models in the Newtonian m(e;hanics involves various assumptions 

with refer to the arguments of U and the form of dq e and d@*. 

In particular, if it is assumed that u = fi (g’a@EA IB, ‘VA YE A UP, s), that the pro- 

cesses in each small particle are reversible (p-rdq(e) = T&S) and that dq** is the flow 

of energy across the boundary of each small particIe dp** = v,QY, where 

Q’ = QaSyVf,wa, with Qffay= Qirya, then one finds from (3.9) that the corresponding 

equations of state obtained by the variational principle and from the first law of thermo- 

dynamics are identical. It should be noted that the adiabatic flow of energy dq+* depends 

in this case on the angular velocities, whilst the latter do not affect the internal energy. 

Models for which the internal energy is a function of the tensor of finite deformations and 

its spatial derivatives, and the quantity dq*+ is independent of the angnlar velocities 

were considered by Idin 191. In the derivation of the corresponding models by means of 

the variational principle, it is necessary to stipulate that the function SW* differs from 

zero. 
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For the models of a classical elastic body in the Special Theory of Relativity 

A = A (g”zQ, U’P, E “& it was shown that .A is the density of internal energy (with a 

reverse sign) which, together with Equation (3.10) shows that P*a* = pu. A study 

of more complex models, for instance h = A (g’r’*, u’P, U&P, E”,,) or A = 

A fg"PQ, $P, EAPq, VA,. E",,) will immediately show that P*p” # - A. For 

such models, a question obviously arises as to what should be defined as the internal 

energy density, P*,’ or (- A). 

The quantities P*pa represent, in spatial tra~sfo~ations, the components of a three- 

dimensional vector which determines the adiabatic inflow of energy to a particle of the 

medium. In the case of classical elasticity A = A ($Pp, u”P, E”p,) there is no 

adiabatic inflow of energy. If the defining parameters include the gradients of deformations, 

then this inflow of energy is quite substantial and cannot be ignored. The components of 

the energy impulse tensor P*,* and Pa,* are, for such models, different from zero. 

This shows that in the proper reference system in which the particle of the medium is 

stationary, as well as in the associated reference system in which the whole continuum 

is at rest, there is, nevertbeiess, a macroscopic transfer of momentum. This arises 

because of the adiabatic ffow of energy which, as it is known, produces a flow of moment- 

um. Also, the macroscopic transfer of momentum is connected with the presence of an 

internal moment of momentum (since p+if # p*ji ). The terms in the expression for 

P*,*, have no aualogues in the nonrelativistic mechanics. 

Equations of state (3.2). together with the equations of motion (1.18) four a self- 
contained system which fully describes the given model of a continuous medium in the 

Special Theory. In the General Theory, the divergence of the canonical tensor of the 

energy impulse does not as a rule become equal to zero. Pfrn$ will in that case be da- 

fined by Equation (1.17) which assumes the following form for the medium under consider- 

ation : 

4. A generalization of the model of rut ideal compressible fluid. As another example, 

let us consider within the framework of the Special Theory some generalisation of the 

model of au ideal compressible fluid for the case when &‘* = 0. Let the defining para- 

meters include the quantities 

g-b uAP I I PI @IZk 

The corresponding model of Newtonian mechanics was considered by Eglit [6] for tbe 

case where the defining parameters included the derivatives of density p with respect to 

coordinates, and by Kogarko [?I for the case where the derivatives of p with respect to 
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time were involved. 

Performing the operations analogous to those carried out in the previous example, we 

obtain the following expressions for the canonical tensor of the energy impulse P^ij 
and the tensor of ‘double forces’ P “Gh. in the associated reference system : 

Tensor Maijk, describing the internal moment of momentum and internal surface 

moments, is in the present case, usually different from zero. Indeed, in accordance with 

the definition of Mijk, we have 

For M”*jk from Equation (4.1). we have 

V”,M^ijL = P^ij _ p^ji 

These relationships are identical with those in fl.14) derived on different assumptiona. 

In the case of an ideal compressible fluid, when 24 depends only upon the density ,B , 

the tensor of energy impulse P^ij assumes the form 

In this case the tensor of the energy impulse is already symmetric. 

Let us now write in the proper reference system the components of the tensor of 

energy impulse for an ideal fluid, determined by means of the variational principle, 

together with the expressions which were obtained for those components on tbe basis of 

the relativistic mechanics of continuous media [3] : 
(4.2) 

2 atAlP) 
Y 

0 
-P ap 

0 0 

,WlP) 
pooo 

11 pvi )I _== 
o 

O - p dP 
0 

11 pW 11 = opoo 

0 o _pe ~/(A/P) o ’ oopo 

aP 0 0 0 pu 

0 0 0 -A 

where U is the internal energy per unit mass, as measured by the observer in the proper 

reference system of each element of the fluid; p is the pressure, where in accordance 

with the first law of thermodynamics p = ~~$0 / dp. Equating the matrices of (4.2) 



Models of continuous media by means of ~a~ationaZ principle 627 

leads us to conclusion*, that 

A= - PU 

Let us now consider the properties of the energy impulse tensor in the particular 

case of an ideal compressible fluid whoserinternal energy is a function of the derivative 

of density p with respect to time. 

The individual study of such a model is of interest because, as shown by Kogarko 

[7] in Newtonian mechanics that, the model of cavitating fluid, as it happens, corresponds 

to the dependence of the internal energy on the time derivative of the density. 

Let us assume that 

where A is a scalar not subject to variation. From (4.1) we obtain** 

p^ii = - P,+pA2-_Shp2~~)r-ij+(pAl-_(~~pa~))u*”u*j+ ( (4.3) 

Here P1 = pa& 1 8~. Th e t ensor of energy impulse is no longer symmetric, and 

it becomes necessary to take into account also the internal angular momentum of the fluid, 

connected with the tensor 

M ,ijk -_ p-jik _ p-ijk = _~Xpa$(~~ri,Aj_rnkj,ni) = 

= _~hp2~(g-k’L1^i-g*kiUli) 

* 

+* 

In a metric with the sign convention (+++-) iz = p U. This result was reached by 
Schopf [4] who used the variational principle in a different form and differently de- 
fined variations. 
Here we have also used the continuity equation VAk@lrA “) = 0. Indeed, taking into 

accomtt the relationship det 11 g^ ij ]I = g *= y “g ;,, it is easy to verify that density 

p, as given by (3.3) satisfies the principle of conservation of mass [4] 
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Here also 

The stress tensor is also no longer symmetric, and in the proper coordinate system 

we have for it, from (4.31, 

g 
ml - _ g-2 = g*= E - 1, g*=fi = Owhen a#fl 

Here, just asin the Newtonian mechanics, the stress tensor is a linear function of the 

second time derivatives of p but, unlike in Kogarko’s model, the stress tensor is not 

spherical. 

Let us write down the expressions for the following components of the energy impulse 

tensor 

This equation shows that, in the present model of the fluid, each particle experisnces 

an adiabatic inflow of energy which is described by a three-dimensionaI vector P**e. 

This inflow of energy depends not oniy on the first and second time derivatives of the 

density of the particle, but also of its acceleration. In addition, in the associated refer- 

ence system, there is a macroscopic transfer of momentum which is defined by a three- 

dimensional vector P*,*. Equation (4.4) also shows that the components of vector P*** 
are not identical to (- A). 

Internal energy U, in general also contains the entropy S as one of its arguments. 

However, if S were included in the arguments of A, one would obtain 

For the model of an ideal finid one would thus have 

au 0 
as= 

The latter is a result of the assumption that 6W* = 0. Since, for an arbitrary 

process XJ 1 ~922 + 0, it is necessary to assume that 81py includes the integral 

where for ~1 A = S the corresponding component of QA p er unit mass has the dimension of 

absolute temperature T, and the integral appearing in 8P is of the form 

s pT6S dz 
V 

As the Lagrangian of an idea1 fluid or au elastic body one can take not only the 
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internal energy, but also any other thermodynamic potential, such as, for instance, the 

density of the free energy pF. In this case, the expression for the stress tensor will 

remain the same, but the component P”,’ will have a different meaning, namely 
pAa’ = pF. Since the arguments of the free energy F include the absolute temperature, 

the integral over the region V, appearing in alp”, will be in the form 

- pS&Tdz s 
V 

this 
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